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Abstract

The creeping motion of a three-dimensional deformable drop or bubble in the vicinity of an inclined wall is investigated by dynamical
simulations using a boundary-integral method. We examine the transient and steady velocities, shapes, and positions of a freely-sus-
pended, non-wetting drop moving due to gravity as a function of the drop-to-medium viscosity ratio, k, the wall inclination angle from
horizontal, h, and Bond number, B, the latter which gives the relative magnitude of the buoyancy to capillary forces. For fixed k and h,
drops and bubbles show increasingly pronounced deformation in steady motion with increasing Bond number, and a continued elonga-
tion and the possible onset of breakup are observed for sufficiently large Bond numbers. Unexpectedly, viscous drops maintain smaller
separations and deform more than bubbles in steady motion at fixed Bond number over a large range of inclination angles. The steady
velocities of drops (made dimensionless by the settling velocity of an isolated spherical drop) increase with increasing Bond number for
intermediate-to-large inclination angles (i.e. 45� 6 h 6 75�). However, the steady drop velocity is not always an increasing function of
Bond number for viscous drops at smaller inclination angles.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The motion of a deformable drop through a viscous
liquid near an inclined plane wall is studied here as a func-
tion of the drop-to-medium viscosity ratio k, wall inclina-
tion angle h (from horizontal), and Bond number,
B = Dqga2/r, where Dq is the density difference between
the drop and suspending medium, a is the non-deformed
spherical radius of the drop, g is the acceleration due to
gravity, and r is the interfacial tension. It is assumed that
the drop does not wet the wall; rather, it remains separated
from the wall by a layer of the suspending liquid.

The existing literature addressing the motion of deform-
able drops or bubbles near an inclined wall or in inclined
channels includes both experimental and theoretical studies
for small and large Reynolds numbers. For example, Mort-
azavi and Tryggvason (2000) used level-set and front-track-
ing methods to study the motion of a drop in a channel at
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moderate Reynolds number. Tsao and Koch (1997) consid-
ered high-Reynolds-number motion of a bubble moving
perpendicular or parallel to an inclined wall. Even though
the Reynolds numbers used in their experiments are not
small (Re = 40–300, based on the settling velocity of a
sphere and the drop radius), they recognized that viscous
forces, rather than inertial forces, beneath the drop are
capable of balancing the gravitational force normal to
the plane wall. For small Reynolds number (Stokes flow),
boundary-integral methods, such as the one used in the
current work, provide for efficient and highly accurate
tracking of a deformable interface, even for very small
drop-to-wall separations. DeBisschop et al. (2002) used a
boundary-integral method to study the Stokes motion of
a 2D homoviscous droplet confined between two walls
under gravity, with and without the presence of surfactant,
as a function of Bond number and inclination angle.
Although ranges of Bond number and inclination angles
were explored by DeBisschop et al. (2002), the presented
results are limited to k = 1, and the important case of small
inclination angles and Bond numbers was not considered.
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Fig. 1. Geometry of an initially spherical drop near an inclined wall.
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The motion of a spherical drop parallel to a plane wall, cor-
responding to B ? 0, has been examined computationally
for small Reynolds number by Chen and Keh (2001) as a
function of viscosity ratio and distance from the wall, using
a boundary-collocation technique. When the component of
gravity normal to the wall is nonzero, a spherical drop will
asymptotically approach the wall and not reach a steady
separation and velocity.

The low-Reynolds-number motion of a deformable drop
near an inclined plane wall was also considered by Hodges
et al. (2004), for somewhat restrictive conditions (e.g.,
small tilt angle relative to horizontal). Provided that B

was not too large (B� h�1 in two dimensions and
B� h�4/3 in three dimensions, with h in radians), they used
(i) a capillary-static approximation for the drop shape
away from the wall, (ii) lubrication theory for the thin film
between the drop and the wall, and (iii) a combination of
lubrication theory and half-plane boundary-integral calcu-
lation for the drop interior. While the two-dimensional
results presented in their work cover a wide-range of
parameter space, the three-dimensional results presented
are less comprehensive. This type of method is essentially
asymptotic and typically predicts drop velocities with loga-
rithmic accuracy. Finding the range of validity for these
approximations would require full boundary-integral simu-
lations or comparison with experiments. The calculations
from Hodges et al. (2004) predict greater velocities than
experimental measurements of Aussillous and Quere
(2002) for bubbles moving near an inclined wall, but show
qualitative agreement with experimental results for small
inclination angles (e.g., 5.6�).

To provide accurate predictions for a deformable drop
near an inclined plane wall over wide parameter ranges,
the present work explores the (B, k, h)-parameter space
for Re� 1 using full three-dimensional boundary-integral
simulations. Although small and large drop deformations
are studied here, we consider primarily subcritical Bond
numbers, for which drop breakup does not occur.
Steady-state and transient quantities such as gap thickness,
drop shapes, and velocities are provided. The principal
computational difficulties are for small inclination angles,
which include the long time required to reach a steady
state, coupled with the fact that the stable choice of time
step depends proportionately on the minimum mesh spac-
ing, and a large number of elements on the drop surface are
required for sufficient numerical resolution. The boundary-
integral algorithm is similar to that of Griggs et al. (2006)
for drop motion in a channel with two parallel walls, and
uses the Green’s function for the half-space adjacent to
an infinite plane wall, which circumvents discretization of
the wall and is capable of better accuracy and computa-
tional speed.

2. Boundary-integral formulation

We consider the motion of a deformable drop near a
wall inclined at angle h (relative to horizontal), under
creeping flow conditions. Both the drop and external sus-
pending fluids are considered Newtonian, and have densi-
ties qd and qe and viscosities ld and le, respectively. The
system is assumed isothermal and devoid of surfactants,
so that the interfacial tension is constant. For any point
on the drop surface, S, the interfacial velocity, u(y), satisfies
the boundary-integral equation for a deformable interface
(Rallison and Acrivos, 1978):

ukðyÞ ¼ 2j
Z

S
uðxÞ � skðx; yÞ � nðxÞdSx þ F kðyÞ; ð1Þ

F kðyÞ ¼ 2

ðkþ 1Þ
1

le

Z
S

f ðxÞnðxÞ �Gkðx; yÞdSx; ð2Þ
where Gk(x;y) is the Green’s function for the half-space
above an infinite plane wall, i.e. the Stokes velocity gener-
ated at x by the unit point force applied to y along the kth
Cartesian coordinate axis (k = 1, 2, 3). The stress tensor
corresponding to the fundamental solution, Gk(x;y), is
sk(x;y), n(x) is the unit normal pointing from the drop
interface into the surrounding fluid, the drop-to-medium
viscosity ratio is k = ld/le, and j = (k � 1)/(k + 1). Final-
ly, f(x) = 2rk(x) � Dqg � x, so that f(x)n(x) is the stress
jump across the interface due to the assumed constant
interfacial tension, r, and the buoyancy force due to grav-
ity, with Dq = jqd � qej and g being the gravitational accel-
eration, and kðxÞ ¼ 1

2
ðk1 þ k2Þ is the local mean curvature

at x. The Cartesian coordinate system x1, x2, x3 is chosen
such that the plane x3 = 0 serves as the bounding wall, as
shown in Fig. 1.

The marginal eigenvalues (j = ±1) of (1) can be purged
through Wielandt deflation (Kim and Karrila, 1991),
resulting in substantial improvements to convergence of
the iterative solutions for k� 1 or k� 1. The deflated
form of the boundary-integral equation is given by
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wkðyÞ ¼ j 2

Z
S

wðxÞ � skðx; yÞ � nðxÞdSx � w0kðyÞ
�

þ nkðyÞ
S

Z
S

wðxÞ � nðxÞdSx

�
þ F kðyÞ; ð3Þ

for w = u � ju0, where the prime denotes the projection of
a vector field on the space of rigid-body motions, and

u ¼ w� j
1� j

w0: ð4Þ

Following singularity and near-singularity subtraction,
(3) becomes suitable for efficient numerical solutions. The
field w0(y) can be calculated, without Gram–Schmidt
orthogonalization, as in Zinchenko et al. (1997).

3. Numerical method

The Green’s function for the whole half-space x3 > 0,
which satisfies the no-slip boundary condition on the wall,
can be represented as the sum of the free-space and wall-
correction parts (i.e., Gðx; yÞ ¼ G0ðx� yÞ þGl

W ðx; yÞÞ and
was originally derived by Blake (1971). Advantages of
using this Green’s function in the boundary-integral
method include that discretization of the bounding wall is
not required, instead only the drop surface must be discret-
ized, and the resulting second-kind integral equation is
suitable for iterative solution by successive substitutions
(Kim and Karilla, 1991).

The free-space term is the fundamental solution for the
velocity in an unbounded fluid,

Gk
0ðx� yÞ ¼ � 1

8p
ek

r
þ rkr

r3

h i
; ð5Þ

with r = x � y and r = krk. The wall-correction part is

Gk
W ðx; yÞ ¼ � 1

8p

�
� ek

r
þ rkr

r3

� �
þ m

�
2y3ðy3 � r3Þ

ek

r3
� 3

rkr

r5

� �

� 2y3

dk3r� rke3

r3

� �	�
; ð6Þ

where r = krk = kx � yIMk, yIM is the mirror image of the
point y with respect to the wall, and m = ±1, with the plus
sign for k = 1, 2 and minus sign for k = 3. The singularity
for the wall-correction Green’s function lies outside the do-
main at x = yIM.

The standard second-order Runge–Kutta method is
used to update the interface. The choice of time step is sim-
ilar to that employed for two drops in close approach
(Zinchenko and Davis, 2005) and ensures adequate stabil-
ity for calculations of drops in close proximity to the
bounding walls. To avoid difficulties with mesh degrada-
tion in dynamical simulations, ‘‘passive” mesh stabilization
techniques are employed to maintain the quality of surface
triangulation with fixed topology as time proceeds. The
essence of this procedure is to construct an additional glo-
bal tangential field on the drop surface from the solution of
a variational problem. Since most of our simulations
involve moderate-to-large deformations, a curvature-adap-
tive version of passive mesh stabilization is used, as
described by Eqs. (5.3)–(5.6) of Zinchenko et al. (1999).
Although the deflated system (3) has suitable spectral prop-
erties for simple iterations, the speed of convergence may
be slow for extreme viscosity ratios and small drop-to-wall
spacings. To expedite calculations, a version of the general-
ized minimal–residual method is used as in Zinchenko and
Davis (2000), which alleviates the observed slow conver-
gence of simple iterations, especially for low viscosity
ratios.
4. Results

For the results presented here, the length and the veloc-
ity scales are, respectively, the non-deformed spherical
drop radius, a, and the settling velocity of an isolated
spherical drop:

US ¼
2

9

ðkþ 1Þ
ðkþ 2=3Þ

Dqga2

le

; ð7Þ

where g is the magnitude of acceleration due to gravity. At
the start of simulations, the drop shape is spherical and
positioned above the inclined wall. It is assumed here that
qd > qe, so that the drop sediments down the wall, although
the solution also applies to qd < qe, where the drop rises
along the wall. Numerical results are presented as functions
of the Bond number, B = Dqga2/r, which is a measure of
the relative magnitude of gravitational to interfacial forces,
the drop-to-medium viscosity ratio, k, and inclination
angle, h. Drop velocities are defined as the average fluid
velocity over the drop volume and is calculated using
Gauss theorem (Griggs et al., 2006; Zinchenko and Davis,
2006). The distance between the drop and the wall is ex-
pressed as the minimum gap, d, which is calculated as the
distance between closest triangle vertex and the wall.
4.1. Intermediate-to-large inclination angles

The simulation results for intermediate-to-large inclina-
tion angles (i.e., 45� 6 h 6 75�) are nearly insensitive to the
level of triangulation explored for these inclination angles,
except for a few extreme cases (e.g., largely deformable
drops and nearly spherical drops moving close to the wall).
For cases when the drop does not deform appreciably or
approaches the wall closely (e.g., within 1% of the drop
radius), using only a moderate number of triangles, typi-
cally NM = 3840 and 6000, provides sufficient numerical
resolution, although the results reported here are for
NM = 8640 triangles, unless otherwise noted. In this sec-
tion, drop motion is studied first for an inclination angle
of h = 60�, where several prominent physical phenomena
are revealed, and then selected results are shown for other
angles.

First, we consider the effect of varying the Bond num-
ber, while the viscosity ratio and tilt angle are fixed. Results
for h = 60� and k = 1 are shown in Fig. 2, where plots of
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Fig. 2. Simulation results for NM = 8640, h = 60�, and k = 1 showing (a)
the velocity and (b) minimum gap with time over a range of Bond numbers.
The dotted lines represent calculations performed using NM = 3840.

Fig. 3. Evolution of drop shape with t
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the drop velocity parallel to the wall, U, and the minimum
gap distance, d, as functions of time are given, for a range
of B = 0.5–2.0 using NM = 8640. Simulation results for a
lower triangulation level, NM = 3840, have been included
in Fig. 2 as the dotted line for the most challenging case
of B = 0.5. The lower resolution gives almost identical
results as the higher resolution, except for the minimum
gap during part of the transient period. Here, the drop
shape is initially spherical, with an initial drop-to-wall sep-
aration of 0.05a. Following an initial period of deforma-
tion, during which the minimum gap decreases, the drop
moves either towards or away from the wall, depending
on B, and eventually reaches a steady shape and velocity.
For Bond numbers greater than 0.7, the steady drop-to-
wall separation increases from its initial value, while for
smaller B, a decrease from the initial value is observed.
During the initial period as the drop approaches the wall,
viscous forces in the fluid layer between the drop and the
wall, in concert with gravitational forces, act to deform
the drop, giving rise to some interesting dynamical behav-
ior. For example, the drop with B = 2 initially approaches
the wall more closely than does the drop with B = 0.5 (see
Fig. 2b, at t � 3.5). This result can be attributed to elonga-
tion of the drop along the x2-axis and the subsequent devel-
opment of a tail, which is very close to the wall. With time,
interfacial forces cause the tail to retract and the drop
moves away from the wall, reaching a steady position,
shape, and velocity, as depicted in Fig. 3. As shown in
Fig. 2a, the steady velocity increases with increasing B,
which is most likely related to the larger steady distance
from the wall for larger B. Since gravitational forces act
to deform the drop from its initial spherical shape, we
anticipate increasingly pronounced deformation with
increasing Bond number. Fig. 4 shows steady drop shapes
ime for h = 60�, k = 1, and B = 2.



Fig. 6. Steady drop shapes shown as cross-sections in the plane of
symmetry (x1 = 0) for h = 60�, B = 2, and viscosity ratios k = 0 (dotted), 1
(solid), and 5 (dashed).
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Fig. 5. Simulation results for NM = 8640, h = 60�, and B = 2 showing (a)
the velocity and (b) minimum gap with time over a range viscosity ratios.
The dotted lines represent calculations performed using NM = 3840.

Fig. 4. Steady drop shapes shown as cross-sections in the plane of
symmetry (x1 = 0) for h = 60�, k = 1, and B = 2.0 (dashed), 1.0 (solid),
and 0.5 (dotted).
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(shown here as stacked contours in the plane x1 = 0) for the
same conditions as in Fig. 2, where the expected trends are
evident. These simulation results are in qualitative agree-
ment with the two-dimensional study from DeBisschop
et al. (2002) for the gravity-driven motion of a drop in an
inclined channel.

We now consider the effect of varying the viscosity ratio,
for h = 60� and B = 2. Results for the translational velocity
and the minimum drop-to-wall spacing are plotted versus
dimensionless time in Fig. 5. Here, viscous drops move clo-
ser to the wall in steady motion than do bubbles (k = 0).
The most viscous drop (k = 5) shows similar dynamic
behavior when compared to the homoviscous drop
(k = 1), as described above, except that it settles slower
and closer to the wall. Simulation results for a lower trian-
gulation level, NM = 3840, have been included in Fig. 5 as
the dotted line for the case k = 5, with the lower resolution
giving identical results as the higher triangulation, except
for the minimum gap during part of the initial transient
period. The inviscid bubble (k = 0) migrates rapidly away
from the wall and reaches a steady velocity and shape fas-
ter than do the drops. By fixing B, the ratio of gravitational
and interfacial forces is constant, and differences in physi-
cal behavior with varying viscosity ratio are directly related
to the viscous forces in the fluid layer between the drop and
wall. These viscous forces play an increasingly dominant
role in influencing the overall drop motion as k increases,
as evidenced by the steady drop velocities in Fig. 5a. Steady
drop shapes are given in Fig. 6. With increasing k, the
drops become increasingly deformed, similar to earlier
work on drop deformations in linear flows (Stone et al.,
1986). However, the minimum gap for the more deformed
drop is less, in contrast to the observations for fixed k,
where larger Bond numbers gave rise to larger steady min-
imum gaps, deformations, and velocities.
For the motion of viscous drops near an inclined wall at
large-to-intermediate angles, steady shapes and velocities
may not exist. Our boundary-integral results indicate that,
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for sufficiently large Bond numbers and viscosity ratios, the
drops continuously elongate, possibly approaching
breakup. Fig. 7 compares the drop elongation (relative to
the non-deformed spherical diameter, and calculated as
the maximum distance between mesh points), E, and the
minimum gap for drops over a wide-range of viscosity
ratios with B = 2.5 and h = 60�. The initial stages for all
viscosity ratios are similar: the drop deforms from its initial
spherical shape and the tail approaches the wall closely,
although the rate of elongation in the initial stages depends
on the viscosity ratio. For k = 0 and k = 1, the tail retracts
and a steady shape, position, and velocity are eventually
reached (see Figs. 5 and 6). In contrast, for k = 10, the
body of the drop moves away from the wall, while the tail
approaches the wall, resulting in the continual elongation.
For k = 1, continual elongation is observed for Bond num-
bers above 3 for h = 60�. In contrast, we do not observe
such continual elongation for bubbles (k = 0), even for
Bond numbers as large as 5, at this inclination angle.
A more complete study of the critical conditions for
steady behavior, versus continual elongation and possible
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Fig. 7. Simulation results for h = 60� and B = 2.5 showing (a) the
maximum drop elongation and (b) minimum gap with time for a range of
viscosity ratios.
breakup, will be the subject of later work. The focus of
the current study is on the behavior of drops and bubbles
under sub-critical conditions.

Fig. 8 shows the steady velocity and minimum gap as
functions of the Bond number for an inclination angle of
60�. Here, the steady velocity has been divided by sinh,
so that the normalization is based on the component of
the isolated drop velocity in the direction along the plane.
The so-defined steady velocity and gap distance are increas-
ing functions of Bond number and inclination angle for this
region of parameter space, and are more sensitive for larger
inclination angles. Here, the steady velocity and minimum
gap are increasing functions of B over the range k and B

considered. The physical behavior for h = 60� is also
observed for other large inclination angles. For example,
Fig. 9 summarizes the steady velocities and minimum gaps
as functions of Bond number for inclination angles of
h = 45�, 60�, and 75�, with k = 1. Similar behavior occurs
for k 6¼ 1 (i.e., steady velocity and minimum gap are
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Fig. 8. Steady state (a) drop velocity and (b) minimum gap as a functions
of Bond number and viscosity ratio for h = 60�.
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increasing functions of B) over the range h and B consid-
ered in Fig. 9, although the onset of impending breakup
is expected to depend on both B and k. In the next section,
we consider smaller inclination angles, where very different
trends are observed than those for intermediate-to-large
angles.

4.2. Small inclination angles

Smaller inclination angles present several computational
challenges, as well as some interesting physical behaviors.
First, drops and bubbles move closer to the wall at smaller
angles than for higher angles, due to the greater normal
component of gravity, which necessitates higher levels of
triangulation (e.g., NM = 8640 instead of NM = 3840 to
obtain accurate steady shapes and velocities). Second, the
time needed to reach a steady state increases, due to this
close approach and the smaller tangential component of
gravity moving the drop or bubble along the wall, which
results in a greater number of required time steps. For
example, a typical simulation for h = 60� for k 6¼ 1 takes
only a few hours for the drop to reach a steady velocity
and position, while for h = 15� the same value of B and
k, the simulation can often take 1–2 days, using an AMD
2800+ under Visual Fortran. For k = 1, the time require-
ments are several fold less, since the first term on the
right-hand side of (1) drops out and iterations are not
required. In this section, we show that, for sufficiently small
angles, viscous drops do not continually elongate but
instead reach steady shapes and velocities for all conditions
examined. Also, in contrast to larger inclination angles, the
steady velocity is not always an increasing function of
Bond number.

We begin our examination for small inclination angles
by considering in Fig. 10 the effect of varying the viscosity
ratio with a fixed Bond number of B = 3 and an inclination
of h = 15�. As with larger inclination angles, a bubble
(k = 0) reaches steady state faster, migrates further from
the wall, and obtains a higher steady velocity than do the
viscous drops, but these differences are more pronounced
for the small inclination angle. The homoviscous drop
(k = 1) behaves almost like the highly viscous drop
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(k = 10), and obtains a steady velocity and gap that are
much closer to those for k = 10 than to those for the bub-
ble (k = 0). Even a small amount of drop viscosity (k = 0.1)
causes substantial deviation from k = 0.

Fig. 11 shows snapshots of the bottoms of the drops for
the same conditions as Fig. 10 at time t = 200 (which is
essentially the steady state), with shading to indicate the
gap profiles (lighter shades are closer to the wall). Several
important observations can be made regarding these pro-
files, which directly influence the overall drop motion.
Clearly, the drop-to-wall clearance is not uniform over
the near-contact region. For all of these cases, the steady
drop shapes exhibit neither a discernable ‘‘flat spot” nor
a simple ‘‘pancake” shape, but a rim or dimple is observed
instead. The viscosity ratio has a large effect on the shape
of the steady near-contact region. For the inviscid drop
(k = 0), the tail of the drop is closest to the wall, and the
region near the wall can be described as a posterior rim.
When the viscosity ratio is increased to k = 1, a noticeable
dimple forms. The highly viscous drop (k = 10) in Fig. 11
Fig. 11. Simulation results for h = 15� and B = 3 showing the shape of the bo
right.
not only has a smaller minimum gap, but a larger portion
of the drop surface is closer to the wall. Here, a very pro-
nounced dimple has formed and, when compared with
the k = 1 case, the drop seems to have spread radially out-
ward, rather than just being stretched in the direction of
descent. The difference in the minimum gaps for k = 1
and k = 10 drops is small, compared to the much larger
minimum gap for the inviscid drop. To provide a more
quantitative view, the gap profile for k = 10 is represented
using contour mapping in Fig. 12. Here, the separation dis-
tance from the wall for several level lines are given. The
steady state shapes, shown as stacked slices in the plane
x1 = 0, for k = 10, 1, and 0 are shown in Fig. 13. It is inter-
esting to note that the viscous drop is not as elongated (or
stretched) along the direction of the wall as the homovis-
cous drop. The asymptotic analysis of Hodges et al.
(2004) does not attempt to resolve the shape of the drop
near the wall, but instead the drop shape is prescribed as
either spherical, spherical with a flat spot, or pancake
shaped. The complex shapes observed here show that
ttom of the drop near the wall; the direction of the drop motion is to the
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Fig. 13. Steady drop shapes shown as cross-sections in the plane of
symmetry (x1 = 0) for h = 15�, B = 3, and viscosity ratios k = 0 (dotted), 1
(solid), and 10 (dashed).
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resolving the three-dimensional complicated shapes and the
gap profiles are important in predicting the velocities of
drops moving near an inclined wall.

The steady velocity and minimum gap as functions of
Bond number and viscosity ratio are shown in Fig. 14 for
an inclination angle of h = 15�, with h = 20� included for
k = 1. For intermediate-to-large inclination angles, the
steady velocity was found to be a monotonically increasing
function of Bond number (see Figs. 2, 8, and 9). However,
this generalization does not hold for small inclination
angles. Although the steady velocity for bubbles (k = 0)
is an increasing function of Bond number, homoviscous
drops (k = 1) and highly viscous drops (k = 20) exhibit
decreasing steady velocities with increasing Bond number
in the range examined. This contrast is surprising since,
in both cases, the steady gap increases with Bond number.
However, the drag is increased with increasing B by the
drop elongation and complicated shape near the wall. In
Fig. 15, we provide the gap profiles for the drop and bubble
near the wall for B = 0.5 and 4 for the bubbles and highly
viscous drops. From the above discussion on drop shape
and its role in influencing drop motion, we know that the
formation of a dimple is prevalent for viscous drops, but
this feature is absent in bubbles. The presence of a dimple
introduces a form of drag, since the fluid trapped in this
region must be carried with the drop as it descends the wall.
With increasing Bond number, the dimple becomes more
prominent for viscous drops, which slows the drops down,
as can represented in Fig. 16. Bubbles exhibit different
physical behavior: a dimple does not form, but instead only
a semi-circular rim near the tail, which grows in width with
increasing Bond number, is observed. The effect of Bond
number on drop deformation for small inclination angles
is illustrated in Fig. 17, where the slices of the steady shapes
for k = 1 are given for B = 4, 2, and 0.5 are given. For the
larger Bond numbers, the drop is stretched along the wall,
whereas for the smaller Bond number, the bulk of the drop
remains spherical, while the bottom has deformed in the
region close to the wall.



Fig. 15. Simulation results for h = 15� comparing the shape of the bottom of the drop near the wall for a bubble and a viscous drop.
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Fig. 16. Contour map showing the distance of the bottom of the drop
interface from the wall for x3 (1) 0.045, (2) 0.035, (3) 0.025, (4) 0.045, and
(5) 0.055 for h = 15�, B = 4, and k = 20. The additional contours are
increase in increments of 0.005 x3.
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The trend of increasing steady velocity with increasing
Bond number that we predict for bubbles is in agreement
with the experimental work of Aussillous and Quere
(2002), where the creeping motion of air bubbles under a
tilted plate through viscous silicon oil was considered for
small inclination angles. Moreover, Richard and Quere
(1999) studied the motion of non-wetting glycerol droplets
Fig. 17. Steady drop shapes shown as cross-sections in the plane of
symmetry (x1 = 0) for h = 15�, k = 1, and B = 4.0 (dashed), 2.0 (solid),
and 0.5 (dotted).
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near a hydrophobically-modified plate in air and observed
that the steady velocity decreases with increasing drop size
for small inclination angles. Hodges et al. (2004) argue that
the drop-to-medium viscosity ratio plays a dominant role
in the types of motion for a drop moving near an inclined
wall. For small k, they predict the drop will ‘‘slip” down the
plane, with external viscous stresses driving a passive recir-
culating flow in the drop interior, while for k ?1 the drop
will slide down the plane without rotating. For intermedi-
ate k, they expect the drop to move in a combination of
sliding, slipping, and rolling. These interesting physical
phenomena provide motivation for additional experimen-
tal and computational work.

5. Concluding remarks

We have studied the low-Reynolds-number gravita-
tional motion of a deformable drop or bubble through a
viscous medium near an inclined plane wall as a function
of the inclination angle, viscosity ratio, and Bond number.
The steady non-dimensional velocity is an increasing func-
tion of B for large-to-intermediate inclination angles (i.e.
45� 6 h 6 75�) for the range of B considered, even though
the deformation also increases with increases in B. This
trend can be attributed to the position of the drop relative
to the wall: drops with small Bond number approach the
wall closely, and, as a result, experience more drag in the
gap region and move slower than do drops with larger
Bond number. For sufficiently high B, h, and k, the drops
appear to exhibit continual elongation and do not
approach a steady state. To follow this elongation with
time, and possible breakup, would require greater triangu-
lation and a modified mesh algorithm and can be the study
of future work.

Compared with larger inclination angles, different phys-
ical behavior for drops and bubbles is predicted at smaller
inclination angles. The scenario of impending drop
breakup was not observed for small inclination angles,
even when larger Bond numbers and viscosity ratios were
considered. For fixed B and k, the viscous forces in the
region between the drop and the wall seem to play a more
significant role for smaller inclination angles, which is evi-
denced by the complicated shape of the drop near the inter-
face. Bubbles were observed to form a semi-circular rim
near the tail that approaches the wall closely, while the
front of the drop was elevated. The elevated front and
semi-circular rim are not present in viscous drops; rather,
the front, sides, and rear of the drop are more proximate
to the walls and form a circular dimple, which becomes
increasingly pronounced as the Bond number or viscosity
ratio is increased, causing a decrease in the steady velocity.
The predicted trend of decreasing velocity with increasing
Bond number seen in Fig. 11 for viscous drops at small
inclination angles is not expected to persist for very small
Bond numbers, however, as then the drop will deform very
little, approach the wall very closely, and slow down as a
result.
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